
SI 671/721 Project Final Report
Analyzing/Predicting Severe Weather From Historical Records

Version 1.0

Jonathan Hartman

Abstract

Severe weather is a significant and increasing
concern in the US. In the past four decades,
severe weather was responsible for more than
$1.5 trillion dollars worth of damage, and in
2017 alone, resulted in more than $300 bil-
lion. (Smith, 2018). Modern weather models
and forecasting are capable of predicting these
events weeks in advance; however arguably
more important than the prediction is making
sure that resources are in place to mitigate the
dangers posed by these events. This paper ana-
lyzes a dataset provided by the NOAA in order
to determine if it is possible to predict when
and where severe weather is most likely based
on historical records. I attempt to create a
method whereby this dataset can be leveraged
to make predictions regarding the probability
of similar events occurring in the future. Al-
though specific predictions prove to be prob-
lematic, more broad statements about given
geographic locations and times are possible to
make with reasonable certainty. This sort of
information could be used to evaluate the stag-
ing of emergency services for disaster relief,
to ensure that local municipalities are best pre-
pared for the most likely severe weather inci-
dents.

1 Introduction

As it’s inefficient to prepare everyone for every-
thing all of the time, it’s important to specialize
and be prepared for the most common dangers that
appear in a given place at a given time. Thus, fire-
fighters concentrate along the west coast in the dry
season and state transportation departments stock
up on salt in the winter. But how specific and ac-
curate a prediction can be made about the potential
for severe weather given past data? In this paper,
I look at a public collection of granular data re-
leased by the National Oceanic and Atmospheric
Administration (NOAA) covering the past seventy

years to see if there’s a possibility to predict the
probability of weather events based on geographic
and temporal factors.

This is a question worth pursuing both from an
immediate practical concern - which specific areas
of the country are at risk, how much at risk, and
when - but also given the potential for observing
an increase in the frequency and intensity of these
sorts of events as climate change starts to affect
seasonal patterns.

In order to approach this task, I created a
method to evaluate, based on historical data,
where various types of severe weather had oc-
curred in the past and identify which geographic
locations were most at risk and at what time of
year. This approach, detailed below, uses a combi-
nation of matrix-based and geo-spatial analysis in
order to create two types of predictions - one based
on the probability of a specific event occurring in a
geographic area in a given year, and another which
attempts to predict specific time-frames for a vari-
ety of event types in a given location.

2 Problem Definition and Data

The problem I decided to look at was incidences
of severe weather in the US, and if it’s possible
to identify areas that are more at risk of severe
storm event in a given time frame than others. The
dataset I used is the NOAA’s Severe Weather Data
Index (SWDI), which contains observed tornado,
hail, and severe wind storms from 1950 through
the present. Aside from the clear ”tornado alley”
in the US midwest, I’m curious to see if I can iden-
tify times and locations that are more prone to se-
vere and damaging weather based off of historical
data.

In order to determine success, I restricted my
analysis to a subset of years - 1950-2015, to deter-
mine if any patterns identified in that time frame



hold true in later years. Of course, an innate dif-
ficulty in dealing with weather are global effects
- general climate change and varying intensity of
other global weather phenomenon - e.g. strong El
Nino years. Still, I hope to provide a method of
predicting weather events with a certainty greater
than 50% .

The SWDI data itself consists of a series
of large csv files, each containing (for each
event) general geographic details, along with Lati-
tude/Longitude start and end points, date and time,
state and county data, and general narrative de-
scriptions.

Although data is provided back to 1950, as
might be expected, the density of reported events
and variability in types of events and the amount of
detail provided for each is skewed towards recent
dates. From 1950 through 1955 the only recorded
events are Tornado, and from 1955 through 1996
only Tornado, Damaging Wind, and Hail events
are included. Following NWS directive 10-1605
in 1996, however, 48 separate types of events
are identified and included. Of those post-1996
events, about 50% are fairly evenly split between
either Thunderstorms or Hail, followed by Flood-
ing, Drought, Winter Storm, and High Wind to
make up the next 25% combined.

The set contains 1,514,188 distinct events, with
at minimum a date/time and location (lat/log and
FIPs county ID) for both the start and end of each
event, a unique identifier, and an indicator of the
type of event. A majority of entries also include
statistics related to property/crop damage and di-
rect/indirect deaths which could be used to esti-
mate the severity of an event in the absence of
a provided concrete measure (e.g. tornadoes are
all listed along with their assumed intensity on the
Enhanced Fujita scale.) There is a complimentary
data set from the same source that includes more
granular location reporting for a large portion of
the main set, which includes additional lat/long
coordinates, range and azimuth readings from spe-
cific reporting stations which covers about 60% of
the main set of events.

The data itself is fairly clean. There do appear
to be about 2,000 data entry errors from the 1997
and 1998 sets, where the given latitudes and lati-
tudes are occasionally orders of magnitude outside
of realistic values. There is also a lack of regular-
ity when indicating the event type - although the
NWS only indicates 48 events, the set includes 74

unique types which needed to be re-coded (e.g.
”Thunderstorm wind/ trees” and ”Thunderstorm
winds/Flooding”, for which there were only 5
combined entries were re-coded as ”Thunderstorm
Wind”). I am a little concerned after plotting the
provided coordinates on a map that there seems to
be a bias towards metropolitan areas - presumably
a result of where there are more observers/remote
sensors to report.

3 Related Work

The Relationship between Severe Weather Warn-
ings, Storm Reports, and Storm Cell Frequency
in and around Several Large Metropolitan Areas
- Jason Naylor and Aaron Sexton.

This paper attempts to locate the spatial dis-
tribution of severe weather as it relates to large
metropolitan areas. Specifically, they looked at
six large Midwestern cities and analyzed NWS is-
sued storm warnings and observed severe weather
events. Their purpose was to determine if the
proximity of a large city to a storm event played a
role in where severe weather occurred. This study
is focused on a small area and a relatively small
dataset from that which is available - only events
within 20 miles of 6 major cities in the years be-
tween 2007 and 2017. (Naylor and Sexton, 2018)

I found this paper immediately useful when data
cleaning as they provided an explanation for some-
thing I had been noticing in the set - on a few occa-
sions there were several event reports for the same
day at nearly the same times but with the exact
same latitude/longitude down to the 4th decimal.
This appears to be a result of some reporting of-
fices using a ”default” location for nearby events.
This paper decided to remove all such duplicates
- I opted to leave in results from the same day as
long as they described different events. In the end
this only affected 11 records.

Their analysis is based on combining this
dataset with several others, notably a collection of
shapefiles collected from the Iowa Environmental
Mesonet indicating the locations of severe storm
warnings for 2007-2017. Calculating the centroids
of these polygons, they identify the location rela-
tive to the city and plot the results on a heat map
over the city using a .25x.25 mile grid to iden-
tify areas which are more prone to receiving storm
warnings. I could probably make something sim-
ilar with the matrices I create - I just need to look
more into what libraries or tools are available to



Figure 1: Events in the Dataset by Year

Figure 2: Event Start By Latitude/Longitude

assist with that.

Probabilistic Prediction of Climate Using
Multi-Model Ensembles: From Basics to Applica-
tions - Palmer et al.

A little in the weeds for me, with a fair bit of
climatological lingo that I keep having to look up,
but it does contain a section discussing predicting
standard (as in not severe) weather by applying the
typical climate of an area to the observed weather
on a given day to identify when variations occur.
That might be a bit of a reach for me to try and
pull in past the halfway point of this project, but I
did find a data set from the NOAA which includes
hourly average temperatures for weather stations

around the country from 2000 to present. It might
be interesting to try and use time-series analysis to
see if there’s a pattern in temperature immediately
preceding a severe event in the area. (Palmer et al.,
2018)

Some comments on the reliability of NOAA’s
Storm Events Database - Renato P. dos Santos

Not included in the initial paper, but I stum-
bled on this in the interim and found it useful as
I went about getting started. It’s not necessarily a
scholarly paper and as such I’m not sure I would
have included it my first submission anyways, but
it was useful for pointing out both a number of out-
liers in the economic damage columns that likely



resulted from data entry errors (e.g. a flood in a
small town in California that appeared to be the
most costly natural disaster in world history.) The
analysis is relegated to exploring things like event
naming conventions, missing values, and data dis-
tribution, which is not particularly relevant to my
project, but I thought it was appropriate to mention
it. (dos Santos, 2016)

Social Media and Severe Weather: Do Tweets
Provide a Valid Indicator of Public Attention to
Severe Weather Risk Communication?

An adjacent study using this dataset in conjunc-
tion with a corpus of twitter posts that mention
the word ”tornado” and population data from the
US census. The author compares geographic lo-
cations of severe weather in conjunction with geo-
graphic data from twitter to see if there is a correla-
tion between twitter mentions and actual weather
events. The study attempts to find a regression
model based on spikes in the appearance of twitter
mentions of the word ”tornado” in order to more
accurately predict the occurrence and path of a tor-
nadic event. This stuck out to me first off as an
interesting attempt to combine social media data
with meteorological, and secondly as perhaps the
sort of avenue I could go down as an alternative to
my current plan. (Ripberger, 2014)

This paper did not end up being particularly rel-
evant, as their analysis is mostly based on the ge-
ographic location and date/time of tornadic events
and using that as a basis to rate the accuracy of
their twitter-based predictions. They do make use
of a population grid published by Columbia Uni-
versity to estimate population density, which I
considered trying to apply that to my own data to
see if I could identify areas that are both at high
risk of severe weather and high in population, but
my matrix doesn’t have a similar resolution and I
wasn’t able to make them match up in time for this
report.

4 Methodology

The first step of the process involved a fair bit of
data cleaning, performed mostly through pandas
(McKinney, 2010–), to remove inconsistencies in
the data, correct input errors, and fill out incom-
plete records. Event types were first standard-
ized according to NWS directive 10-1605 (Mur-
phy, 2018), to result in 55 distinct types of event.
These were grouped into five ”meta-categories”
based on the general type of damaged caused by

the event - Wind, Heat, Cold, Water and Other.
As some events were logged as simply having oc-
curred on the county level, they were not provided
with geographic coordinates. For these events, the
FIPS code was used to obtain the geographic cen-
troid of the county in pace of a specific origin.
Likewise, some events contained an end date, but
no starting date. For these, the starting date was
assumed to be the same as the end date1.

For each type of event, I iterated through each
week of the year and performed the following
three step process. First, I created a scipy (Jones
et al., 2001–) 5800x2760 linked list sparse ma-
trix, each element of which corresponded to a lat-
itude and longitude with two points of precision.
I then filtered the dataset for all events which had
occurred within two weeks either side of a given
date.2 Iterating through the results, each was as-
signed a value based upon how many days off from
the given date the event occurred, discounted by
1/1 + log(days). This value was then added to
the matrix dependent on the event type. For events
with a path (Tornados, Dust Devils, etc.), I applied
Bresenham’s line algorithm (Bresenham, 1965) to
find all points along the path denoted by the start-
ing and ending latitude/longitude within the ma-
trix. For events without a clear path, but which do
not have a specific point of origin (Thunderstorms,
Blizzards, etc), points were added to all matrix el-
ements within five rows/columns of the origin, to
represent an area roughly ten miles in diameter 3.
Finally, events which were report simply on the
county level (Droughts, Extreme Heat, etc.) were
assigned a single value based on the county cen-
troid.

Next, the matrix was converted into a Geopan-
das dataframe of events, with the row and column
of each non-zero cell corresponding to an event’s
latitude and longitude, and with the value of that
cell as an extra variable. I then create a Geopan-
das dataframe from a shapefile of all counties in
the continental US. I left-join my dataframe to that
one, so that all events from my dataframe that oc-

1This may result in some inaccuracy with predictions, as
some of these events are types such as ”Drought” or ”Winter
Weather” which might not have as clearly a defined starting
point as other events.

2Any event between 1950 and 2015 inclusive is consid-
ered. Events in 2016 and later are withheld for evaluating
predictions.

3These events typically have multiple reports from several
different locations. As such, a five mile radius was considered
large enough to account for a single report, whereas the event
may have affected several states.



cur within the same county have their event value
summed together. The resulting dataframe con-
tains enough data for a plot of the continental US
by county, along with a value representing the fre-
quency of a specific event type based on a given
date.

This array of values is then provided to the
Pysal (Developers, 2014–) library. Pysal Weights
are calculated from the counties shapefile using
DistanceBand with a threshold of three, and a
Gettis-Ord G* z-statistic calculated based on those
weights and the values calculated for each county.
The resulting array is stored in a csv file, which
can be referenced later.4 These values can be used
to locate ”hot spots” where a particular kind of
event is more likely to occur than anywhere else
on a given date. Examples of the plots created by
this method are provided in Figure 3 and Figure 4.
Clearly visible in these two plots are season peaks
of the so called ”Hail Alley” near Colorado, Ne-
braska, and Wyoming, and ”Tornado Alley” near
Oklahoma, Kansas, and Nebraska.

Figure 3: Hail Likelihood by County for July 1st

Figure 4: Tornado Likelihood by County for April 15th

In order to make predictions, these values are
collected on a per county basis. Plotting them on
a time series allows a visual representation of the
likelihood of a particular event in a given county

4Iterating through all fifty-two weeks for each separate
event type takes about four hours.

when compared to the continental US as a whole.
(See examples in Figures 5 and 6). This approach
is sort of like taking a series of these plots for
an entire year, stacking them on top of one an-
other, and drawing a line vertically though them to
pull out the values for a given county throughout
a year. By setting a cutoff point, we can estimate
that those dates in which the value is above the cut-
off indicate that the county is more likely to have
a specific weather event than not, with high peaks
indicating more strongly that an event will occur
here compared to the remainder of the continental
US.

A complete Jupyter Notebook containing all
of the code used to create this analysis with
this method is available at https://github.
com/jonhartm/SI671_Project.

5 Evaluation and Results

5.1 Final Evaluation

Evaluation is based on two approaches, both based
on withholding from the analysis of the dataset
of all events which occurred after December 31,
2015.

The first involves randomly selecting dates and
locations and determining if the prediction holds
true. ”Positive” labels are simply randomly se-
lected events from the dataset from 2016 or later.
”Negative” labels are randomly selected coordi-
nates, dates, and event types, which have no events
of the given type within two weeks of the selected
date within two degrees of latitude/longitude. Re-
sults from a set of 1,000 predictions, equally split
between positive and negative labels are indicated
in the confusion matrix in Figure 5.1. A True
prediction means that this method determined that
there was a greater than 1 in 10 chance that in a
year, a given severe event would occur.

Predictions based on Gettis Ord G scores
Predicted False Predicted True

Actual False 955 45
Actual True 377 624

Unsurprisingly, negative labels are extremely
easy to predict. For almost any type of severe
weather, given a random location, it is far more
likely for an event not to happen. False positives
are very small in number, which is desirable -
any prediction system which may have a bearing
on public warnings would want to minimize the
number of incorrect warnings provided as a result.
Lowering this was a major concern in my interim

https://github.com/jonhartm/SI671_Project
https://github.com/jonhartm/SI671_Project


Figure 5: Tornado Likelyhood for Kansas City, MO

Figure 6: Drought Likelyhood for Austin, TX

report, so I’m glad it’s been brought under control.
The True-Positive results are a little disappointing.
I assumed that making predictions based on spe-
cific event types would be a little less accurate, but
I thought I would be landing somewhere in the low
70’s.

The second approach involves taking a given lo-
cation and predicting what severe weather events
will occur and at what time of year. To do this, I
picked a location at random, then iterated through
each of the 15 most common event types, pulling
the scores my method created and sorting them
from high to low. If the scores were below a
threshold, it was assumed that the event was not
likely at this location. If the score was above the
threshold, I took the two dates with the highest
score, and pulled all events from any date after
2016 within two weeks of that date. If a severe
weather event of the same type was recorded near
that date and in that location, it was considered a
True prediction. Likewise, if my method predicted
that this event was not likely and no event was
recorded, that was a true prediction as well. An
example of this prediction for a location selected
at random is provided in Figure 7 (Bolded Rows
are missed predictions). This result is more or less
typical of this approach: Several True-False pre-
dictions, some True-True predictions, and a few
False Positives/False Negatives.

I consider this approach to be a slightly better
method of determining accuracy. Although com-
putationally it is about 10 times more difficult than
the random True/False predictions, this I feel is
more in line with the sort of thing I was trying to
do in the first place, which is given a location, what
are the likely events and when will they occur.
I expected these predictions to be a little worse
than the first approach, and so was initially pleas-
antly surprised when my accuracy seemed to hover
around 66%. Like the first approach, there are
some free guesses - in the example table, for in-
stance, it’s very unlikely that South Central Texas
is going to have an Ice Storm in any year.5 How-
ever, positive predictions are barely better than
random chance. In part this may just be a result of
the test set being restricted to a three year period,
meaning that seasonal variations may be account-
able for missed predictions.

5Although, as I write this, Lubbock, TX, 75 miles NW of
Ringgold County, is receiving 8-10 inches of snow



Predictions for Ringgold County, TX
Event Type Prediction Event Date Truth

Blizzard False -/- False
Extreme Cold False -/- False

Hail True 7/2/17 True
Heavy Snow False -/- False

Ice Storm False -/- False
Winter Storm False -/- False

Drought True 5/7 False
Excessive Heat True 9/21 False

Wildfire False -/- False
Flash Flood True 10/29 False
Heavy Rain False -/- False
High Wind False -/- False
Hurricane False -/- False

Thunderstorm Wind True 4/23/17 True
Tornado True 4/23/17 True

Event Predictions based on Location
Predicted False Predicted True

Actual False 978 342 1,320
Actual True 247 233 480

1,225 575

5.2 Naive Evaluation (interim report)

In practice, I actually started running into the op-
posite problem I was expecting. I had imagined
that events would be so spaced out in time that I
would have a hard time getting positive results. In
reality, there’s so much noise that I’ve had quite
a bit of difficulty in lowering the amount of false
positives I get.

The following tables are some of the results
from this method - a few hand selected locations
based on known weather and a series of locations
chosen at random.

Locations With No Severe Weather
City Month Predicted (Prob) Actual

Los Angeles, CA Jan No (3%) No
San Diego, CA Jul No (0%) No
Simi Valley, CA Nov No (0%) No

Locations With Known Severe Weather
City Month Predicted (Prob) Actual

Colo Springs, CO Jul Yes (99%) Yes
Assumption, LA Feb No (0%) Yes

Caddo, OK May No (47.3%) Yes
Harris, TX May Yes (63.2%) Yes

Locations/Months Selected At Random
Lat/Long Month Predicted (Prob) Actual

32.49N/-90.98W Apr Yes (99%) Yes
31.41N/-99.16W Jun Yes (63.2%) Yes
36.62N/-90.91W May No (42.1%) Yes
38.83N/-84.33W May Yes (99%) Yes
27.77N/-82.77W Jan No (42.1%) Yes
47.74N/-122.3W Apr No (0%) No
28.64N/-89.79W Oct No (0%) No
42.15N/-102.8W Mar No (21.1%) No
32.74N/-91.27W May Yes (99%) No
35.86N/-101.9W Dec No (5.6%) No

6 Discussion

6.1 Final Report
Overall I’m a little disappointed with the predic-
tion section of this approach. I had hoped it would
be a little easier to make predictions since so many
of them are seasonally and geographically depen-
dent. This is revealed in how simple it is to make
negative predictions - for some event types we can
simply rule out a significant part of the map and
calendar year. I considered that this may be a re-
sult of the time slices I used (analyzing 1950-2016
and predicting on 2016-2017), and so I re-ran the
analysis, this time using 1950-2010 and predicting
on 2011-2017, but with similar results.6

I’m not sure it’s fair to compare these results
with my baseline, as the baseline was a simple
binary approximation, more suited to determin-
ing if my matrix method was a valid approach for
transforming the data. That said, I did get simi-
lar results in terms of raw accuracy with my sec-
ond approach, but I attribute a fair amount of that
to how simple it would be to just guess ”False”
for every event. In the table provided for my
second approach, for instance, simply predicting
False for each event would still result in 12/15 cor-
rect. That’s not to say I consider this approach
a complete failure - I was expecting the second
method to be difficult. I think if I had a little
more time I might be able to find a better balance
between my analysis set and the test set which
could improve the predictions. I may also be too
restrictive in what I consider a ”Correct” predic-
tion. My best results so far come from consider-
ing +/- two weeks and a range of 1.5 degrees of
latitude/longitude. More tuning with those param-
eters might result in an improvement as well.

That said, I do think the plots produced by this
method are very interesting. Just given a basic fa-
miliarity with the sorts of weather in the continen-
tal US, seasonal trends like summer storms, hur-
ricane season, and wildfires are immediately ap-
parent. Creating weekly plots for a year and ani-
mating them produces some very pleasing visuals
- particularly when looking at some of the more
widespread events such as winter storms and tor-
nadoes. I think if the goal of this project was to
create interpretable and interesting visuals rather
than making concrete predictions, this approach is
perfectly fine with a little tweaking.

6Actually 0.4% worse, but I was unable to perform
enough predictions to say it was statistically different.



One of my lingering concerns is my use of the
counties as groupings. On the East Coast coun-
ties tend to be very small, whereas San Bernadino
county alone is larger than several states. Since the
data I’m looking at is irrespective of population,
using these artificial designations may not always
be appropriate, and may account for some of the
significant variation that’s present in some plots.
Performing a PCA analysis on the entirety of the
dataset, for instance, indicates that the most sig-
nificant variation in the dataset is a result of San
Bernadino and the surrounding counties, followed
by the larger counties in Maine and parts of the
Northwest. (Figure 7).

Figure 7: 1st Principle Component - Entire Dataset

6.2 Interim Report

Running 2,000 iterations of the random predic-
tions, I’m about 77% on target - of the remainder,
it’s split pretty evenly between false positives and
false negatives. Though that looks pretty good it
isn’t phenomenal and I feel like all I’m really get-
ting is seasonal weather patterns, which isn’t very
interesting. I’m also disappointed with the false
negatives I’m getting. It’s particularly a problem
if your goal is for the public benefit - of the four lo-
cations I picked for having known severe weather
all had either a tornadic event or a severe hail-
storm in the month I was looking at and only one
was predicted as positive with much certainty.

I’m also concerned at false positives in occa-
sions like the second to last in the random list,
when my method predicts with near certainty that
there will be an event and none occurs. There’s of
course going to be some unpredictability - it is the
weather after all - and maybe the prediction would
hold true if I looked at a few years following to see
if my percentage predictions are at all close. Just
out of curiosity, however, I ran a set of 1000 pre-
dictions - of those, 14% were very high probability
and of those, 25% were incorrect, which is some-
thing I was a bit disappointed about.

7 Things left undone

There’s so much other data related to this dataset
that I didn’t include, either because I wasn’t sure I
would have enough time to perform a proper anal-
ysis or because I was worried about having the fo-
cus of the project become too broad.

My initial proposal mentioned a secondary
dataset related to this one, which had more precise
location data related to a subset of these events -
latitude/longitude of the reporting station, azimuth
direction, and range. I started to use these as a
more accurate method of populating the matrix for
events with data in both datasets, but it quickly be-
came apparent that I was spending far too much
time figuring out how to calculate the approximate
shape of an event, so I dropped this approach in
favor of simply approximating a radius for these
events. I think my estimation works well enough
for a student project, but making my matrix more
accurate would certainly be the first step I would
take beyond where this report ends.

I also think a potential fix to the issue of varied
county size throwing off the Gettis-Ord G analysis
might be to ignore counties all together and run
the same analysis on just a shapefile of a grid that
covers the US. Since the analysis is irrespective of
population areas, I think this would just be a case
of creating the shapefile and substituting it in place
of the US counties shapefile. I just ran out of time
before I could figure out exactly how to do that.

There is also a dataset from the same source
which is used in one of the papers I referenced ear-
lier (Naylor and Sexton, 2018) on a smaller scale,
which contains shapefiles representing polygons
of every storm warning published by the NWS for
the past 10 years. I think an interesting approach
to this project would be to look at the overlay of
that dataset with the results from this one and see
if there were areas which I identified as being of
high risk which were not receiving the same level
of warning as other areas.

Another related set I considered was focused
entirely on damaging hail storms, and which con-
tained incredibly granular detail about every hail-
producing event for the past thirty years based off
of NEXRAD radar reporting, rather than human
reports. This set was significantly larger than the
one I used here, focused on a single type of event,
and contained a high level of meteorological de-
tail. If I had been working in a team with some-
one with a meteorological background, that might



have been an interesting set to include. As it was,
I didn’t feel knowledgeable enough in the termi-
nology used in the set to attempt an analysis.

Climate change would also be an interesting
topic to explore as a related topic to this analysis.
I’d be interested to see if there was something that
could be observed by creating a window to ana-
lyze, say 1990-1995, and seeing how the results of
that compared with 1991-1996 and so on.

8 Work Plan

8.1 Final Report

The first half of my methodology didn’t differ en-
tirely from what I had proposed earlier. The idea
of populating a matrix based on latitude and longi-
tude was present in every iteration of what I did. I
did end up reducing the size of the matrix by 1/10
- in part to make the calculations faster and in part
because two points of precision was as specific as
most of the data was. In the end, there was virtu-
ally no difference visually between the two.

The major change is with regard to how spe-
cific my predictions are. My original intention was
to predict based off of a given latitude and longi-
tude, however as my final approach leverages the
Gettis-Ord G method, predictions based off of the
county level were more natural. I still used the lat-
itude and longitude when selecting points for eval-
uation, but these are immediately converted into a
county. I also originally intended to run my anal-
ysis day by day. The computational time for this
was clearly going to be far too long, so I opted to
instead look at week by week analysis and com-
pute a rolling average to fill in the gaps. This had
the result of dampening some of the data, but I de-
termined that to be a reasonable tradeoff.

My first evaluation was based off of a simple
binary prediction - did I think a location had se-
vere weather on a given date or not. This is obvi-
ously a simple prediction to make, and my naive
approach (finding the average values of all ma-
trix elements within a given radius) was pretty
much just a seasonality detector. Southern Cali-
fornia was almost always negative, whereas East-
ern Oklahoma in tornado season was almost al-
ways positive. I ended up taking two approaches
to this. First, I split the data into ”Meta-Types”
based on the kind of damage typical of that kind
of weather. This mostly worked, but I wasn’t par-
ticularly happy with the way I had to lump some
events together (e.g. Tornadoes and Hurricanes,

Hail storms and Blizzards). As I created more and
more subgroups, I decided I was almost better off
just doing them individually. I left Meta Types in
the code just in case, but more or less abandoned
them as a predictor in the end.

It’s also a bit of a trope in the class at this point,
but I did think for a while there might be a way
to shoehorn an SVD decomposition into this. As
soon as we covered Geospatial mining in class, I
decided this was not the way to go.

8.2 Interim Report
The first step will be data cleaning - a constant
comment in papers that reference this data set is
that the data is in places incomplete or poorly for-
matted, so getting it to the point that I can reliably
load in data will probably be the first hurdle.

Secondly will be coding to load and pre-
compute all of the matrices I have in mind, as well
as calculating secondary geographic data from
path and range data. At this stage I’ll also need
to have a method of quickly querying the data and
making predictions.

My current analysis feels pretty basic, so I’d
really like to look at applying more of the spatial
analysis techniques we’ve discussed so far, as well
as looking to see if there’s anything time-series
analysis can identify when looking at data grouped
at the state level.

To that end I’m planning on doing three things
moving forward. First, I’d like to take one more
shot at my current method and group the weather
events into more broad categories (snow, damag-
ing wind, fire, flooding, etc.) and see if I can make
more specific predictions - i.e. this place has an
X% chance of a snow event, X% chance of a flood-
ing event, etc. Secondly, I’d like to explore some
of what we talked about in the most recent class
regarding spatial analysis, and specifically Getis-
Ord Gi statistics, given that I do have the ability
to group these events by county. Thirdly, if I have
time, I’d like to see if I can do anything with time-
series analysis while looking at data for a specific
state or grid square. If all I’m getting at the mo-
ment is indeed seasonal patterns, maybe there’s
something interesting I could find looking more
generally about an area’s climate.
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